Luteolin Inhibits Breast Cancer Development and Progression In Vitro and In Vivo by Suppressing Notch Signaling and Regulating MiRNAs.
نویسندگان
چکیده
BACKGROUND/AIMS This study aims to investigate the effect of Luteolin on breast cancer in vitro and in vivo and the interaction between miRNAs and Notch signaling after Luteolin intervention, and illustrates the possible underlying mechanism and regulation loop. METHODS Cell growth/survival assays and cell cycle analyses were performed to evaluate cell survival in vitro. Scratch tests, cell invasion assays and tube formation assays were carried out to analyze cell viability and identify the impact of Luteolin on angiogenesis. Critical components in the Notch pathway including proteins and mRNAs were detected by Western blotting analyses, ELISA assays and real-time reverse transcription-polymerase chain reaction. Matrix metalloproteinases activity was evaluated by gelatin zymography analyses. MiRNAs were analyzed by miRNA expression assays. After MDA-MB-231 cells were separately transfected with Notch-1 siRNA/cDNA and miRNA mimics, the above assays were also carried out to examine potential tumor cell changes. Xenograft models were applied to evaluate the treatment potency of Luteolin in breast cancer. RESULTS Luteolin significantly inhibited breast cancer cell survival, cell cycle, tube formation and the expression of Notch signaling-related proteins and mRNAs, and regulated miRNAs. After introducing Notch-1 siRNA and miRNA mimics, MDA-MB-231 cells presented with changes in miRNA levels, reduced Notch signaling-related proteins, and decreased tumor survival, invasion and angiogenesis. CONCLUSION Luteolin inhibits Notch signaling by regulating miRNAs. However, the effect of miRNAs on the Notch pathway could be either Luteolin-dependent or Luteolin-independent. Furthermore, Notch-1 alteration may inversely change miRNAs levels. Our data demonstrates that Luteolin, miRNAs and the Notch pathway are critical in breast cancer development and prognosis.
منابع مشابه
Long non-coding RNA FOXO1 inhibits lung cancer cell growth through down-regulating PI3K/AKT signaling pathway
Objective(s): Lung cancer is one of the most common malignant tumors, which seriously threatens the health and life of the people. Recently, a novel long non-coding RNA (lncRNA) termed lncFOXO1 was found and investigated in breast cancer. However, the effect of lncFOXO1 on lung cancer is still ambiguous. The current study aimed to uncover the functions of lncFOXO1 in l...
متن کاملThe Role of miRNA Dysregulation in Thyroid Cancer Development by Targeting the Main Signaling Pathways
Thyroid cancer is one of the most common malignancies of endocrine glands, causing carcinomas, such as papillary, follicular, medullary, and anaplastic thyroid carcinomas. Due to the significance of thyroid carcinomas, identification of the main signaling pathways and the affecting mutations has been considered by researchers. Further studies on the dysregulation of oncogenes in signaling path...
متن کاملUrinary Melatonin Levels and Skin Malignancy
Melatonin inhibits tumor genesis in a variety of in vivo and in vitro experimental models of neoplasia. In industrialized societies, light at night, by suppressing melatonin production, poses a new risk for the development of a variety of cancers such as breast cancer. This effect on skin has been previously studied only in animals and not in humans. Our goal was to examine the relationship bet...
متن کاملRegulation of breast cancer stem cell activity by signaling through the Notch4 receptor.
Notch receptor signaling pathways play an important role not only in normal breast development but also in breast cancer development and progression. We assessed the role of Notch receptors in stem cell activity in breast cancer cell lines and nine primary human tumor samples. Stem cells were enriched by selection of anoikis-resistant cells or cells expressing the membrane phenotype ESA(+)/CD44...
متن کاملPre-Clinical and Clinical Data Confirm the Anticancer Effect of Deuterium Depletion
The two stable isotopes of hydrogen, protium (1H) and deuterium (2H) differ in their physicochemical nature. Deuterium-depleted water (DDW) significantly inhibited the growth rate of different tumor cell lines in culture media and xenotransplanted MDA-MB-231, MCF-7 human breast adenocarcinomas and PC-3 human prostate tumors in vivo. The apoptosis-triggering effect of DDW was demonstrat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology
دوره 37 5 شماره
صفحات -
تاریخ انتشار 2015